Arrow 文件 I/O#
Apache Arrow 提供文件 I/O 函数,以便从应用程序的开始到结束都方便使用 Arrow。在本文中,您将
将 Arrow 文件读取到
RecordBatch
中,并在之后将其写回将 CSV 文件读取到
Table
中,并在之后将其写回将 Parquet 文件读取到
Table
中,并在之后将其写回
先决条件#
在继续之前,请确保您已
安装了 Arrow,您可以在此处设置:在您自己的项目中使用 Arrow C++
了解来自 基本 Arrow 数据结构 的基本 Arrow 数据结构
一个运行最终应用程序的目录 - 此程序将生成一些文件,因此请做好准备。
设置#
在编写一些文件 I/O 之前,我们需要填补几个空白
我们需要包含必要的头文件。
需要一个
main()
将所有内容粘合在一起。我们需要一些文件来进行操作。
包含#
在编写 C++ 代码之前,我们需要一些包含文件。我们将获取 iostream
用于输出,然后为本文中将使用的每种文件类型导入 Arrow 的 I/O 功能
#include <arrow/api.h>
#include <arrow/csv/api.h>
#include <arrow/io/api.h>
#include <arrow/ipc/api.h>
#include <parquet/arrow/reader.h>
#include <parquet/arrow/writer.h>
#include <iostream>
Main()#
对于我们的粘合剂,我们将使用之前数据结构教程中的 main()
模式
int main() {
arrow::Status st = RunMain();
if (!st.ok()) {
std::cerr << st << std::endl;
return 1;
}
return 0;
}
它与 RunMain()
配对,就像我们之前使用它时一样
arrow::Status RunMain() {
生成要读取的文件#
我们需要一些文件来实际操作。在实践中,您可能会有一些输入用于您自己的应用程序。但是,在这里,我们希望探索执行 I/O,因此让我们生成一些文件以使操作易于遵循。为了创建这些文件,我们将定义一个辅助函数,我们将在最开始运行它。请随时通读此内容,但本文稍后将解释所使用的概念。请注意,我们正在使用之前教程中的日期/月/年数据。目前,只需复制函数即可
arrow::Status GenInitialFile() {
// Make a couple 8-bit integer arrays and a 16-bit integer array -- just like
// basic Arrow example.
arrow::Int8Builder int8builder;
int8_t days_raw[5] = {1, 12, 17, 23, 28};
ARROW_RETURN_NOT_OK(int8builder.AppendValues(days_raw, 5));
std::shared_ptr<arrow::Array> days;
ARROW_ASSIGN_OR_RAISE(days, int8builder.Finish());
int8_t months_raw[5] = {1, 3, 5, 7, 1};
ARROW_RETURN_NOT_OK(int8builder.AppendValues(months_raw, 5));
std::shared_ptr<arrow::Array> months;
ARROW_ASSIGN_OR_RAISE(months, int8builder.Finish());
arrow::Int16Builder int16builder;
int16_t years_raw[5] = {1990, 2000, 1995, 2000, 1995};
ARROW_RETURN_NOT_OK(int16builder.AppendValues(years_raw, 5));
std::shared_ptr<arrow::Array> years;
ARROW_ASSIGN_OR_RAISE(years, int16builder.Finish());
// Get a vector of our Arrays
std::vector<std::shared_ptr<arrow::Array>> columns = {days, months, years};
// Make a schema to initialize the Table with
std::shared_ptr<arrow::Field> field_day, field_month, field_year;
std::shared_ptr<arrow::Schema> schema;
field_day = arrow::field("Day", arrow::int8());
field_month = arrow::field("Month", arrow::int8());
field_year = arrow::field("Year", arrow::int16());
schema = arrow::schema({field_day, field_month, field_year});
// With the schema and data, create a Table
std::shared_ptr<arrow::Table> table;
table = arrow::Table::Make(schema, columns);
// Write out test files in IPC, CSV, and Parquet for the example to use.
std::shared_ptr<arrow::io::FileOutputStream> outfile;
ARROW_ASSIGN_OR_RAISE(outfile, arrow::io::FileOutputStream::Open("test_in.arrow"));
ARROW_ASSIGN_OR_RAISE(std::shared_ptr<arrow::ipc::RecordBatchWriter> ipc_writer,
arrow::ipc::MakeFileWriter(outfile, schema));
ARROW_RETURN_NOT_OK(ipc_writer->WriteTable(*table));
ARROW_RETURN_NOT_OK(ipc_writer->Close());
ARROW_ASSIGN_OR_RAISE(outfile, arrow::io::FileOutputStream::Open("test_in.csv"));
ARROW_ASSIGN_OR_RAISE(auto csv_writer,
arrow::csv::MakeCSVWriter(outfile, table->schema()));
ARROW_RETURN_NOT_OK(csv_writer->WriteTable(*table));
ARROW_RETURN_NOT_OK(csv_writer->Close());
ARROW_ASSIGN_OR_RAISE(outfile, arrow::io::FileOutputStream::Open("test_in.parquet"));
PARQUET_THROW_NOT_OK(
parquet::arrow::WriteTable(*table, arrow::default_memory_pool(), outfile, 5));
return arrow::Status::OK();
}
要使您其余代码中的文件正常运行,请确保在 RunMain()
中的第一行调用 GenInitialFile()
以初始化环境
// Generate initial files for each format with a helper function -- don't worry,
// we'll also write a table in this example.
ARROW_RETURN_NOT_OK(GenInitialFile());
使用 Arrow 文件进行 I/O#
我们将逐步执行此操作,按如下方式进行读取和写入
读取文件
打开文件
将文件绑定到
ipc::RecordBatchFileReader
将文件读取到
RecordBatch
写入文件
从
RecordBatch
写入文件
打开文件#
要实际读取文件,我们需要获得某种指向它的方法。在 Arrow 中,这意味着我们将获得一个 io::ReadableFile
对象 - 就像 ArrayBuilder
可以清除并创建新数组一样,我们可以将其重新分配给新文件,因此我们将在整个示例中使用此实例
// First, we have to set up a ReadableFile object, which just lets us point our
// readers to the right data on disk. We'll be reusing this object, and rebinding
// it to multiple files throughout the example.
std::shared_ptr<arrow::io::ReadableFile> infile;
一个 io::ReadableFile
本身功能有限 - 我们实际上使用 io::ReadableFile::Open()
将其绑定到文件。对于我们在这里的目的,默认参数就足够了
// Get "test_in.arrow" into our file pointer
ARROW_ASSIGN_OR_RAISE(infile, arrow::io::ReadableFile::Open(
"test_in.arrow", arrow::default_memory_pool()));
打开 Arrow 文件读取器#
一个 io::ReadableFile
太通用,无法提供所有功能来读取 Arrow 文件。我们需要使用它来获取一个 ipc::RecordBatchFileReader
对象。此对象实现了读取正确格式的 Arrow 文件所需的所有逻辑。我们通过 ipc::RecordBatchFileReader::Open()
获取一个
// Open up the file with the IPC features of the library, gives us a reader object.
ARROW_ASSIGN_OR_RAISE(auto ipc_reader, arrow::ipc::RecordBatchFileReader::Open(infile));
将打开的 Arrow 文件读取到 RecordBatch#
我们必须使用 RecordBatch
读取 Arrow 文件,因此我们将获取一个 RecordBatch
。一旦我们有了它,我们就可以实际读取文件了。Arrow 文件可以有多个 RecordBatches
,因此我们必须传递一个索引。此文件只有一个,因此传递 0
// Using the reader, we can read Record Batches. Note that this is specific to IPC;
// for other formats, we focus on Tables, but here, RecordBatches are used.
std::shared_ptr<arrow::RecordBatch> rbatch;
ARROW_ASSIGN_OR_RAISE(rbatch, ipc_reader->ReadRecordBatch(0));
准备 FileOutputStream#
对于输出,我们需要一个 io::FileOutputStream
。就像我们的 io::ReadableFile
一样,我们将重复使用它,因此请做好准备。我们打开文件的方式与读取时相同
// Just like with input, we get an object for the output file.
std::shared_ptr<arrow::io::FileOutputStream> outfile;
// Bind it to "test_out.arrow"
ARROW_ASSIGN_OR_RAISE(outfile, arrow::io::FileOutputStream::Open("test_out.arrow"));
从 RecordBatch 写入 Arrow 文件#
现在,我们获取之前读取的 RecordBatch
,并使用它以及我们的目标文件来创建一个 ipc::RecordBatchWriter
。ipc::RecordBatchWriter
需要两件事
目标文件
我们
RecordBatch
的Schema
(如果我们需要写入更多相同格式的RecordBatches
)。
Schema
来自我们现有的 RecordBatch
,目标文件是我们刚刚创建的输出流。
// Set up a writer with the output file -- and the schema! We're defining everything
// here, loading to fire.
ARROW_ASSIGN_OR_RAISE(std::shared_ptr<arrow::ipc::RecordBatchWriter> ipc_writer,
arrow::ipc::MakeFileWriter(outfile, rbatch->schema()));
我们可以只使用我们的 RecordBatch
调用 ipc::RecordBatchWriter::WriteRecordBatch()
来填充我们的文件
// Write the record batch.
ARROW_RETURN_NOT_OK(ipc_writer->WriteRecordBatch(*rbatch));
特别是对于 IPC,写入器必须关闭,因为它预计可能会写入多个批次。为此
// Specifically for IPC, the writer needs to be explicitly closed.
ARROW_RETURN_NOT_OK(ipc_writer->Close());
现在我们已经读取和写入了一个 IPC 文件!
使用 CSV 进行 I/O#
我们将逐步执行此操作,按如下方式进行读取和写入
读取文件
打开文件
准备表格
使用
csv::TableReader
读取文件
写入文件
从
Table
写入文件
打开 CSV 文件#
对于 CSV 文件,我们需要打开一个 io::ReadableFile
,就像 Arrow 文件一样,并重用我们之前的 io::ReadableFile
对象来执行此操作
// Bind our input file to "test_in.csv"
ARROW_ASSIGN_OR_RAISE(infile, arrow::io::ReadableFile::Open("test_in.csv"));
准备表格#
CSV 可以读取到 Table
中,因此声明一个指向 Table
的指针
std::shared_ptr<arrow::Table> csv_table;
将 CSV 文件读取到表格#
CSV 读取器具有需要传递的选项结构体 - 幸运的是,这些选项都有默认值,我们可以直接传递。有关其他选项的参考,请访问此处:文件格式。它没有特殊的定界符并且很小,因此我们可以使用默认值创建读取器。
// The CSV reader has several objects for various options. For now, we'll use defaults.
ARROW_ASSIGN_OR_RAISE(
auto csv_reader,
arrow::csv::TableReader::Make(
arrow::io::default_io_context(), infile, arrow::csv::ReadOptions::Defaults(),
arrow::csv::ParseOptions::Defaults(), arrow::csv::ConvertOptions::Defaults()));
CSV 读取器准备就绪后,我们可以使用其csv::TableReader::Read()
方法填充我们的Table
// Read the table.
ARROW_ASSIGN_OR_RAISE(csv_table, csv_reader->Read())
从 Table 写入 CSV 文件#
写入 Table
的 CSV 操作与写入 RecordBatch
的 IPC 操作完全相同,只是使用我们的 Table
,并使用 ipc::RecordBatchWriter::WriteTable()
而不是 ipc::RecordBatchWriter::WriteRecordBatch()
。请注意,使用的是相同的写入器类 - 我们使用 ipc::RecordBatchWriter::WriteTable()
进行写入,因为我们拥有一个 Table
。我们将以文件为目标,使用我们的 Table’s
Schema
,然后写入 Table
// Bind our output file to "test_out.csv"
ARROW_ASSIGN_OR_RAISE(outfile, arrow::io::FileOutputStream::Open("test_out.csv"));
// The CSV writer has simpler defaults, review API documentation for more complex usage.
ARROW_ASSIGN_OR_RAISE(auto csv_writer,
arrow::csv::MakeCSVWriter(outfile, csv_table->schema()));
ARROW_RETURN_NOT_OK(csv_writer->WriteTable(*csv_table));
// Not necessary, but a safe practice.
ARROW_RETURN_NOT_OK(csv_writer->Close());
现在,我们已经读取和写入了一个 CSV 文件!
使用 Parquet 进行文件 I/O#
我们将逐步执行此操作,按如下方式进行读取和写入
打开 Parquet 文件#
再次说明,此文件格式 Parquet 需要一个 io::ReadableFile
,我们已经有了,并且需要在文件上调用 io::ReadableFile::Open()
方法
// Bind our input file to "test_in.parquet"
ARROW_ASSIGN_OR_RAISE(infile, arrow::io::ReadableFile::Open("test_in.parquet"));
设置 Parquet 读取器#
与往常一样,我们需要一个读取器来实际读取文件。我们一直从 Arrow 命名空间获取每个文件格式的读取器。这次,我们进入 Parquet 命名空间以获取 parquet::arrow::FileReader
std::unique_ptr<parquet::arrow::FileReader> reader;
现在,要设置我们的读取器,我们调用 parquet::arrow::OpenFile()
。是的,即使我们使用了 io::ReadableFile::Open()
,这也是必要的。请注意,我们通过引用传递 parquet::arrow::FileReader
,而不是将其分配给输出
// Note that Parquet's OpenFile() takes the reader by reference, rather than returning
// a reader.
PARQUET_THROW_NOT_OK(
parquet::arrow::OpenFile(infile, arrow::default_memory_pool(), &reader));
将 Parquet 文件读取到 Table#
有了准备好的 parquet::arrow::FileReader
,我们可以将其读取到 Table
,但我们必须通过引用传递 Table
,而不是将其输出
std::shared_ptr<arrow::Table> parquet_table;
// Read the table.
PARQUET_THROW_NOT_OK(reader->ReadTable(&parquet_table));
从 Table 写入 Parquet 文件#
对于单次写入,写入 Parquet 文件不需要写入器对象。相反,我们提供我们的表格,指向它将用于任何必要内存消耗的内存池,告诉它在哪里写入,以及如果需要将文件分解成块时所需的块大小。
// Parquet writing does not need a declared writer object. Just get the output
// file bound, then pass in the table, memory pool, output, and chunk size for
// breaking up the Table on-disk.
ARROW_ASSIGN_OR_RAISE(outfile, arrow::io::FileOutputStream::Open("test_out.parquet"));
PARQUET_THROW_NOT_OK(parquet::arrow::WriteTable(
*parquet_table, arrow::default_memory_pool(), outfile, 5));
结束程序#
最后,我们只需返回 Status::OK()
,这样 main()
就会知道我们已完成,并且一切正常。就像第一个教程一样。
return arrow::Status::OK();
}
有了这些,您已经使用 Arrow 读取和写入 IPC、CSV 和 Parquet,并且可以正确加载数据并写入输出!现在,我们可以进入下一篇文章中使用计算函数处理数据。
请参阅以下内容以获取完整代码的副本
19// (Doc section: Includes)
20#include <arrow/api.h>
21#include <arrow/csv/api.h>
22#include <arrow/io/api.h>
23#include <arrow/ipc/api.h>
24#include <parquet/arrow/reader.h>
25#include <parquet/arrow/writer.h>
26
27#include <iostream>
28// (Doc section: Includes)
29
30// (Doc section: GenInitialFile)
31arrow::Status GenInitialFile() {
32 // Make a couple 8-bit integer arrays and a 16-bit integer array -- just like
33 // basic Arrow example.
34 arrow::Int8Builder int8builder;
35 int8_t days_raw[5] = {1, 12, 17, 23, 28};
36 ARROW_RETURN_NOT_OK(int8builder.AppendValues(days_raw, 5));
37 std::shared_ptr<arrow::Array> days;
38 ARROW_ASSIGN_OR_RAISE(days, int8builder.Finish());
39
40 int8_t months_raw[5] = {1, 3, 5, 7, 1};
41 ARROW_RETURN_NOT_OK(int8builder.AppendValues(months_raw, 5));
42 std::shared_ptr<arrow::Array> months;
43 ARROW_ASSIGN_OR_RAISE(months, int8builder.Finish());
44
45 arrow::Int16Builder int16builder;
46 int16_t years_raw[5] = {1990, 2000, 1995, 2000, 1995};
47 ARROW_RETURN_NOT_OK(int16builder.AppendValues(years_raw, 5));
48 std::shared_ptr<arrow::Array> years;
49 ARROW_ASSIGN_OR_RAISE(years, int16builder.Finish());
50
51 // Get a vector of our Arrays
52 std::vector<std::shared_ptr<arrow::Array>> columns = {days, months, years};
53
54 // Make a schema to initialize the Table with
55 std::shared_ptr<arrow::Field> field_day, field_month, field_year;
56 std::shared_ptr<arrow::Schema> schema;
57
58 field_day = arrow::field("Day", arrow::int8());
59 field_month = arrow::field("Month", arrow::int8());
60 field_year = arrow::field("Year", arrow::int16());
61
62 schema = arrow::schema({field_day, field_month, field_year});
63 // With the schema and data, create a Table
64 std::shared_ptr<arrow::Table> table;
65 table = arrow::Table::Make(schema, columns);
66
67 // Write out test files in IPC, CSV, and Parquet for the example to use.
68 std::shared_ptr<arrow::io::FileOutputStream> outfile;
69 ARROW_ASSIGN_OR_RAISE(outfile, arrow::io::FileOutputStream::Open("test_in.arrow"));
70 ARROW_ASSIGN_OR_RAISE(std::shared_ptr<arrow::ipc::RecordBatchWriter> ipc_writer,
71 arrow::ipc::MakeFileWriter(outfile, schema));
72 ARROW_RETURN_NOT_OK(ipc_writer->WriteTable(*table));
73 ARROW_RETURN_NOT_OK(ipc_writer->Close());
74
75 ARROW_ASSIGN_OR_RAISE(outfile, arrow::io::FileOutputStream::Open("test_in.csv"));
76 ARROW_ASSIGN_OR_RAISE(auto csv_writer,
77 arrow::csv::MakeCSVWriter(outfile, table->schema()));
78 ARROW_RETURN_NOT_OK(csv_writer->WriteTable(*table));
79 ARROW_RETURN_NOT_OK(csv_writer->Close());
80
81 ARROW_ASSIGN_OR_RAISE(outfile, arrow::io::FileOutputStream::Open("test_in.parquet"));
82 PARQUET_THROW_NOT_OK(
83 parquet::arrow::WriteTable(*table, arrow::default_memory_pool(), outfile, 5));
84
85 return arrow::Status::OK();
86}
87// (Doc section: GenInitialFile)
88
89// (Doc section: RunMain)
90arrow::Status RunMain() {
91 // (Doc section: RunMain)
92 // (Doc section: Gen Files)
93 // Generate initial files for each format with a helper function -- don't worry,
94 // we'll also write a table in this example.
95 ARROW_RETURN_NOT_OK(GenInitialFile());
96 // (Doc section: Gen Files)
97
98 // (Doc section: ReadableFile Definition)
99 // First, we have to set up a ReadableFile object, which just lets us point our
100 // readers to the right data on disk. We'll be reusing this object, and rebinding
101 // it to multiple files throughout the example.
102 std::shared_ptr<arrow::io::ReadableFile> infile;
103 // (Doc section: ReadableFile Definition)
104 // (Doc section: Arrow ReadableFile Open)
105 // Get "test_in.arrow" into our file pointer
106 ARROW_ASSIGN_OR_RAISE(infile, arrow::io::ReadableFile::Open(
107 "test_in.arrow", arrow::default_memory_pool()));
108 // (Doc section: Arrow ReadableFile Open)
109 // (Doc section: Arrow Read Open)
110 // Open up the file with the IPC features of the library, gives us a reader object.
111 ARROW_ASSIGN_OR_RAISE(auto ipc_reader, arrow::ipc::RecordBatchFileReader::Open(infile));
112 // (Doc section: Arrow Read Open)
113 // (Doc section: Arrow Read)
114 // Using the reader, we can read Record Batches. Note that this is specific to IPC;
115 // for other formats, we focus on Tables, but here, RecordBatches are used.
116 std::shared_ptr<arrow::RecordBatch> rbatch;
117 ARROW_ASSIGN_OR_RAISE(rbatch, ipc_reader->ReadRecordBatch(0));
118 // (Doc section: Arrow Read)
119
120 // (Doc section: Arrow Write Open)
121 // Just like with input, we get an object for the output file.
122 std::shared_ptr<arrow::io::FileOutputStream> outfile;
123 // Bind it to "test_out.arrow"
124 ARROW_ASSIGN_OR_RAISE(outfile, arrow::io::FileOutputStream::Open("test_out.arrow"));
125 // (Doc section: Arrow Write Open)
126 // (Doc section: Arrow Writer)
127 // Set up a writer with the output file -- and the schema! We're defining everything
128 // here, loading to fire.
129 ARROW_ASSIGN_OR_RAISE(std::shared_ptr<arrow::ipc::RecordBatchWriter> ipc_writer,
130 arrow::ipc::MakeFileWriter(outfile, rbatch->schema()));
131 // (Doc section: Arrow Writer)
132 // (Doc section: Arrow Write)
133 // Write the record batch.
134 ARROW_RETURN_NOT_OK(ipc_writer->WriteRecordBatch(*rbatch));
135 // (Doc section: Arrow Write)
136 // (Doc section: Arrow Close)
137 // Specifically for IPC, the writer needs to be explicitly closed.
138 ARROW_RETURN_NOT_OK(ipc_writer->Close());
139 // (Doc section: Arrow Close)
140
141 // (Doc section: CSV Read Open)
142 // Bind our input file to "test_in.csv"
143 ARROW_ASSIGN_OR_RAISE(infile, arrow::io::ReadableFile::Open("test_in.csv"));
144 // (Doc section: CSV Read Open)
145 // (Doc section: CSV Table Declare)
146 std::shared_ptr<arrow::Table> csv_table;
147 // (Doc section: CSV Table Declare)
148 // (Doc section: CSV Reader Make)
149 // The CSV reader has several objects for various options. For now, we'll use defaults.
150 ARROW_ASSIGN_OR_RAISE(
151 auto csv_reader,
152 arrow::csv::TableReader::Make(
153 arrow::io::default_io_context(), infile, arrow::csv::ReadOptions::Defaults(),
154 arrow::csv::ParseOptions::Defaults(), arrow::csv::ConvertOptions::Defaults()));
155 // (Doc section: CSV Reader Make)
156 // (Doc section: CSV Read)
157 // Read the table.
158 ARROW_ASSIGN_OR_RAISE(csv_table, csv_reader->Read())
159 // (Doc section: CSV Read)
160
161 // (Doc section: CSV Write)
162 // Bind our output file to "test_out.csv"
163 ARROW_ASSIGN_OR_RAISE(outfile, arrow::io::FileOutputStream::Open("test_out.csv"));
164 // The CSV writer has simpler defaults, review API documentation for more complex usage.
165 ARROW_ASSIGN_OR_RAISE(auto csv_writer,
166 arrow::csv::MakeCSVWriter(outfile, csv_table->schema()));
167 ARROW_RETURN_NOT_OK(csv_writer->WriteTable(*csv_table));
168 // Not necessary, but a safe practice.
169 ARROW_RETURN_NOT_OK(csv_writer->Close());
170 // (Doc section: CSV Write)
171
172 // (Doc section: Parquet Read Open)
173 // Bind our input file to "test_in.parquet"
174 ARROW_ASSIGN_OR_RAISE(infile, arrow::io::ReadableFile::Open("test_in.parquet"));
175 // (Doc section: Parquet Read Open)
176 // (Doc section: Parquet FileReader)
177 std::unique_ptr<parquet::arrow::FileReader> reader;
178 // (Doc section: Parquet FileReader)
179 // (Doc section: Parquet OpenFile)
180 // Note that Parquet's OpenFile() takes the reader by reference, rather than returning
181 // a reader.
182 PARQUET_THROW_NOT_OK(
183 parquet::arrow::OpenFile(infile, arrow::default_memory_pool(), &reader));
184 // (Doc section: Parquet OpenFile)
185
186 // (Doc section: Parquet Read)
187 std::shared_ptr<arrow::Table> parquet_table;
188 // Read the table.
189 PARQUET_THROW_NOT_OK(reader->ReadTable(&parquet_table));
190 // (Doc section: Parquet Read)
191
192 // (Doc section: Parquet Write)
193 // Parquet writing does not need a declared writer object. Just get the output
194 // file bound, then pass in the table, memory pool, output, and chunk size for
195 // breaking up the Table on-disk.
196 ARROW_ASSIGN_OR_RAISE(outfile, arrow::io::FileOutputStream::Open("test_out.parquet"));
197 PARQUET_THROW_NOT_OK(parquet::arrow::WriteTable(
198 *parquet_table, arrow::default_memory_pool(), outfile, 5));
199 // (Doc section: Parquet Write)
200 // (Doc section: Return)
201 return arrow::Status::OK();
202}
203// (Doc section: Return)
204
205// (Doc section: Main)
206int main() {
207 arrow::Status st = RunMain();
208 if (!st.ok()) {
209 std::cerr << st << std::endl;
210 return 1;
211 }
212 return 0;
213}
214// (Doc section: Main)